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Abstract Convolution surfaces are attractive for modeling
objects of complex evolving topology. This paper presents
some novel analytical convolution solutions for planar poly-
gon skeletons with both finite-support and infinite-support
kernel functions. We convert the double integral over a pla-
nar polygon into a simple integral along the contour of the
polygon based on Green’s theorem, which reduces the com-
putational cost and allows for efficient parallel computation
on the GPU. For finite support kernel functions, a skeleton
clipping algorithm is presented to compute the valid skele-
tons. The analytical solutions are integrated into a prototype
modeling system on the GPU (Graphics Processing Unit).
Our modeling system supports point, polyline and planar
polygon skeletons. Complex objects with arbitrary genus
can be modeled easily in an interactive way. Resulting con-
volution surfaces with high quality are rendered with inter-
active ray casting.
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1 Introduction

Traditional modeling systems can generate complex objects,
however, they take too much time for novice users to learn.
As one of the most intuitive and simplest ways, drawing is
usually one of the best choices for such users. Moreover, it
is desirable to express the ideas and visions of designers at
the earliest possible stages. Therefore, a lot of sketch-based
modeling systems have been developed recently [11, 17, 24,
27, 31].

Rotund objects are usually expected for sketch-based sys-
tems. Therefore, convolution surfaces are a good choice for
sketch-based modeling because of its pleasing superposition
property. A convolution surface is defined by convolving
a skeleton with a three-dimensional low-pass filter kernel.
The skeletal elements can be points, polylines, polygons,
and even volumes. As skeletons are natural abstractions for
shapes, convolution surfaces offer a new means for sketch-
based surface modeling [1, 2, 27]. In the sketch-based mod-
eling system, constructing a 3D shape based on the 2D sil-
houette is the most important tool to create new objects [11].
In the convolution surface-based ConvMo system [27], Tai et
al. approximate the medial axis of a given silhouette curve
as a set of line segments, and create a convolution surface by
convolving a linearly weighted kernel along each segment.
Later, Alexe et al. perform extraction of a graph of branch-
ing polylines and polygons from silhouette contours [2]. The
polygons in the graph have to be further triangulated to cre-
ate the convolution surface of the graph. Unlike these sys-
tems, we use the sketched silhouette as a new type of skele-
ton and compute its convolution surface on the GPU. By
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converting the double integral over a planar polygon into a
simple integration along the contour of the polygon based
on Green’s theorem, the triangulation process for the planar
polygon, and hence the redundant computations involved are
avoided. As a result, our approach allows for parallel com-
putation on the GPU.

The majority of previously available sketch-based mod-
elling systems relying on implicit surfaces used the iso-
surface mesh extraction algorithms. However, details may
be lost because of the sampling resolution of the polygo-
nization process. This motivates us to render the resulting
surface using ray-casting because it allows us to produce
high-quality images. As ray-casting convolution surfaces is
usually computational intensive, we try to use GPU and the
natural bounding volumes of the skeletons to accelerate the
ray/surface intersection so that ray-casting can be performed
interactively.

The main contributions of the paper are the derivation of
closed-form solutions for convolving planar polygon skele-
tons and its practical use in a prototype sketch-based mod-
eling system on the GPU. We calculate the fields of all the
sketched skeletons on the GPU. For a sketched silhouette
curve, we convert it into a closed planar polygon and then
calculate its field. By transforming the double integral of
the polygon into a line integral using Green’s theorem, our
solution is both analytical and efficient. A fast ray-casting
method is also presented to render high-quality sketched
convolution surfaces by making use of parallel computation
on the GPU.

The remainder of this paper is organized as follows. Af-
ter introducing the related work in Sect. 2, we derive the
closed-form convolution surface solutions for planar poly-
gon skeletons with both the quartic polynomial kernel (with
finite support) and the Cauchy kernel (with infinite support)
in Sect. 3. In Sect. 4, a prototype modeling system using
the closed-form solutions is presented. The implementation
details and some modeling results with our system are dis-
cussed in Sect. 5, and our paper ends with the conclusion
section.

2 Related work

Different from traditional 3D modeling software packages,
sketch-based modeling can be used to create 3D shapes con-
veniently by novice users without professional skills. Con-
volution surfaces are often used in such systems because of
their smooth blending behavior and automatic changes of
topology defined by the underlying skeletons. In this section,
we will introduce the related work on convolution surfaces
and sketch-based modeling using implicit surfaces.

Convolution surfaces. Implicit surfaces are conveniently
adopted to model complex objects, such as tree branches,

liquids, and organic shapes. The reason is that the field-
based implicit surfaces can easily deal with smooth de-
formable shapes with varying topologies. Skeleton-based
implicit surfaces, including metaballs, distance surfaces, and
convolution surfaces, are quite suitable for animation be-
cause the skeletons can be directly used for skeleton-based
animation. A convolution surface is defined as convolving
geometric skeletons (e.g., lines, curves and polygons) with
Gaussian kernel functions [5]. Later, many different kernels
are introduced. These kernels can be classified into infinite
support kernels (e.g., Cauchy kernel [22]) and finite support
kernels (e.g., quartic polynomial kernel [15]). For finite sup-
port kernels, the field falls to zero when the distance from
the point in question to the skeleton is greater than the ef-
fective radius of the kernel. For infinite support kernels, the
field never falls to zero even the point in question is quite
far from the skeleton. Theoretically, any geometric prim-
itive can be used as a skeleton to create convolution sur-
faces. However, closed-form solutions for convolution sur-
faces depend on both the kernel functions and the skeleton
primitives. Researches show that analytical convolution so-
lutions exist for skeletons such as line segments, planes, tri-
angles, arcs, and quadratic spline curves [12–14, 22, 26]. Be-
fore the closed-form solutions for convolving triangle skele-
tons with quartic polynomial kernels is introduced [15], the
analytical convolution solutions for triangle skeletons with
Cauchy kernels were presented by McCormack and Sher-
styuk [22], which allows the authors of the sketch-based
system to create models with planar surfaces [2]. Ange-
lidis et al. [3] model convolution surfaces based on subdi-
vision curves and subdivision surfaces. Another application
of closed-form solutions for line skeletons is introduced by
Kravtsov et al. [20]. They simulate the interaction of viscous
objects with meshes in which a convolution surface is em-
bedded. Recently, Hubert [10] independently derived similar
analytical solutions for convolving planar polygon skeletons
by applying Green’s theorem.

Sketch-based modeling using implicit surfaces. As im-
plicit surfaces can be merged together naturally and eas-
ily, lots of researches adopt implicit surfaces as modeling
primitives. These systems include BlobTrees [29, 30], RBF-
based [18], and level set-based [7]. Compared to the explicit
surface-based sketching modeling system, implicit surface-
based methods can design smooth models with complex
topology easily. Karpenko et al. [18] propose a sketch-based
system using RBF, in which the input sketches are used to
generate the 3D constraint points. However, with the in-
crease of the number of constraint points, the system slows
down rapidly because of the linear system involved. More-
over, the linear system must be recalculated if a point of the
model is modified. BlobTree [30] extends the CSG opera-
tions by allowing intuitive global and local operations; it is
a tree-based shape representation and has been successfully
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used in the sketch-based ShapeShop [23, 24] system. As a
skeleton-based modeling tool [5], convolution surfaces were
naturally introduced into sketch-based modeling [27]. The
sketch-based system in [1] extracts the point skeletons of the
sketched outlines, and then utilizes spherical implicit func-
tions to construct the blobby 3D models. In order to model
complex objects such as cylindrical and planar surfaces, too
many point-skeletons are needed to avoid bumps. Cylindri-
cal surfaces can be easily modeled using line skeletons [2,
4, 27], as convolution solutions for line skeletons can be ob-
tained analytically [12–14, 26]. The triangle skeletons are
also adopted by the system in [2] to construct the palm com-
ponent of a hand model where an extracted polygon has to
be triangulated in order to allow for the evaluation of its field
values.

3 Field value calculation for planar polygon skeletons

In this section, after giving a brief introduction to convolu-
tion surfaces, we deduce analytical solutions for planar poly-
gon skeletons with different kernels using a curve integral
method. Our approach allows us to efficiently evaluate the
field value at any point analytically.

3.1 Convolution surfaces

A convolution surface is an iso-surface defined in an im-
plicit scalar field whose values are evaluated by accumulat-
ing contributions from 3D points of a skeleton. The con-
tribution usually decreases rapidly when the distance be-
tween a point in space and a skeleton is increased. Here, we
adopt the convolution surface definition by McCormack and
Sherstyuk [22]. Let p(x, y, z) be a space point in �3, and
g : �3 → � be a geometric function representing a model-
ing skeleton V :

g(p) =
{

1, p ∈ skeleton V

0, otherwise
. (1)

Let f : �3 → � be a potential function which defines the
field with a single point in the skeleton V , and let q be

a point in V . Then the total field value contributed by the
skeleton at point p is the convolution of functions f and g:

F(p) =
∫

V

g(q)f (p − q) dV = (f ⊗ g)(p). (2)

f is also called the convolution kernel function. Theoret-
ically, any geometric primitive can be used as a skeleton.
However, closed-form solutions depend on both the kernel
and the skeleton.

3.2 Curve integral for planar polygon skeletons

Let K(v0v1v2 · · ·vnv0) be a planar polygon skeleton, the
field value at a point p for this skeleton is computed by a
double integral according to (2). For a kernel function with
infinite support, the integration is evaluated on the entire
polygon. However, for a finite support kernel function, the
valid skeletons are areas in the clipping sphere centered at
p, as shown in Fig. 1(a). Generally, the intersecting area is a
polygon or multiple polygons whose boundaries consist of
arcs and line segments. It is difficult to perform the integra-
tion on the intersecting area directly. One solution is to de-
compose the polygon into triangle segments and chord seg-
ments, and then evaluate the convolution integral for each
type [15], as shown in Fig. 1(b). However, such a solution is
not suitable for GPU implementation because GPU branch-
ing is usually slow. Here, we present a closed-form solution
by converting the double integral into a curve integral using
Green’s theorem. As the integral computation can be per-
formed for each edge one by one, we can make better use of
the GPU’s enormous floating point computing capacity.

The field value at point p for a planar polygon skeleton
can be computed directly without the polygon triangulation.
With the integration domain D and its boundary l, the field
value at point p is:

F(p) =
∫∫

D

f (r) dx dy, (3)

where r = ‖p − q‖ denotes the Euclidean distance between
points p and q, q ∈ D. This double integral can be computed

Fig. 1 The regions for the
convolution integral. The valid
polygon skeleton for finite
support kernels is shadowed
in (a). Illustration in (b)
triangulates the polygon before
using closed-form convolution
surface solutions for triangle
skeletons. (c) shows our
clipping between a general
polygon and the clipping sphere
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by converting it into a curve integration using Green’s theo-
rem [28]:
∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dx dy =

∮
l

P dx + Qdy, (4)

where P and Q are functions with continuous first-order
derivatives. In order to satisfy (4), P and Q must be de-
signed elaborately. Here, we set P = 0 and rewrite (4) as
follows:∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dx dy =

∫∫
D

∂Q

∂x
dx dy =

∮
l

Qdy. (5)

In our case, the boundary l consists of arcs and line seg-
ments. Taking Fig. 1(a) as an example, the boundary of the
integration domain D includes an arc and five line segments.
The field contribution at P is the sum of the integrals along
each boundary primitive:

F(p) =
∫∫

D

f (r) dx dy =
∮

l

Qdy

=
∫

arcs
Qdy +

∫
linesegments

Qdy

=
∑

i

∫
ci

Qdy +
∑
j

∫
lj

Qdy. (6)

Once the kernel function is chosen, the continuous function
Q can be determined. In the next three subsections, we will
deduce the analytical field functions for two commonly used
field functions which are adopted in our system.

3.3 Evaluation of a valid skeleton for planar polygons

In this section, we will discuss how to compute the valid
skeleton for a planar polygon skeleton. As we convert the
double integral into a line integral, the valid skeleton for in-
finite support kernels is just the union of the edges of the
polygon. However, for finite support kernels, a key step is to
determine the valid skeletons which have field contribution.

For a 3D point p, let R be the effective radius of the fi-
nite support kernel, we define the sphere centered at p with
radius R as the clipping sphere. We compute the valid skele-
ton by adopting an approach similar to the Weiler–Atherton
polygon clipping algorithm [6]. In our case, the clipping
window is a clipping circle. The circle is the intersection
of the clipping sphere and the plane the polygon lies. Given
a polygon K(v0v1v2 · · ·vnv0) (here, we take n = 9 as an
example in Fig. 1(c)) and a circle C, the boundary of the in-
tersection consists of some boundaries from K and C. Con-
necting the intersection points forms the boundary. The in-
tersection points are classified into income point at which
the boundary of K comes into the circle and outcome point.

We use Algorithm 1 to describe the clipping algorithm.
After applying the clipping algorithm to the given polygon, a

Algorithm 1 Skeleton clipping
1: Create a vertex list LK for the given polygon

K(v0v1v2 · · ·vnv0) and an empty list LC for the clip-
ping circle C;

2: Find the intersection points between polygon K and cir-
cle C, flag them with income point or outcome point, in-
sert them into list LK along the polygon boundary, and
list LC according to the angles formed by the lines from
the circle center to the intersection points and a line
from the circle center to the first intersection point. Cre-
ate a double link between the same intersection points
in two lists LK and LC ;

3: Clipping. If there are intersection points which have not
been traced, do the following steps:

4: Create an empty vertex list Lr for resulting polygons;
5: Choose an intersection point randomly as a start point,

and insert it into Lr ;
6: If the intersection point is an income point, we trace the

polygon boundary along list LK ; otherwise, we trace
the clipping circle boundary along list LC ;

7: Trace the polygon boundary LK or LC . Insert polygon
vertices into Lr until a new intersection point is found;

8: Insert the intersection point into Lr , and change the trac-
ing direction according the double link at the intersec-
tion point;

9: Repeat steps 7 and 8 until we are back to the start point;

set of vertices are obtained. They are intersection points and
some polygon vertices. Two adjacent vertices form a path of
our convolution integral. The path is either a line segment or
an arc. For two adjacent vertices, if one of them is a vertex
of the polygon, then the path is a line segment. Otherwise,
both of them are intersection points. In this case, if the first
vertex is an income point, then the path is a line segment;
otherwise, the path is an arc. Taking Fig. 1(c) as an exam-
ple, after performing the intersection calculation, we create
a vertex list LK of the given polygon K(v0v1v2 · · ·v9v0)

and a list LC for the clipping circle. The intersection points
v′

1, v′
2, v′

3, v′
4, v′

5, v′
6 will be inserted into two lists LK and

LC , and a double pointer will be created at each intersec-
tion point between two lists, as shown in Fig. 2(a). In the
clipping procedure, we choose an intersection point with an
income point flag as the start point for tracing. As shown in
Fig. 2(b), v′

2 is the start point which is flagged with a small
red triangle. By tracing two lists, a set of resulting points,
Lr,1 is obtained. The second tracing is shown in Fig. 2(c).
After clipping, there are two subpolygons stored in the re-
sulting lists Lr,1 and Lr,2.

However, it will consume a lot of GPU memory if we
store list LK for each thread on the GPU. We solve this
problem by performing the convolution integral as soon as
a valid line skeleton is available. In this way, we need not
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Fig. 2 The polygon clipping procedure. The intersection points were
inserted into Lists LK and LC with a double link in (a). Two new
sub-polygons were created in (b) and (c)

store LK at all. The list LC for valid arc skeletons is created
by inserting the intersection point with flag income point or
outcome point. As the list LC is usually not too long, we can
store it in the local memory of each thread. A list of sixteen
intersection points is empirically enough in our implemen-
tation. Taking Fig. 1(c) as an example, as soon as a clipped
line segment (v′

2v1,v1v′
1,v′

4v8,v8v′
5, or v′

6v′
3) between the

clipping sphere and the planar polygon skeleton is obtained,
we calculate its integral. In the meantime, we store the in-
tersection points (v′

2,v′
1,v′

4,v′
5,v′

6, and v′
3) in list LC . Then

we calculate the algebraic sum of integrals along the clipped
arcs.

3.4 Finite support kernel functions

If we take the following quartic polynomial as the kernel
function:

f (r) =
{

(1 − r2

R2 )2, r ≤ R

0, r > R
, (7)

where R is the effective radius of the kernel, the analytic
solution of (5) can be obtained by using the curve integral
method:∫∫

D

∂Q

∂x
dx dy =

∮
l

(∫
∂Q

∂x
dx

)
dy. (8)

To deduce the solution conveniently, in polygon K , we set
up a local coordinate system whose origin is the projection
point of p on the polygon. Two coordinate axes x and y are
any two orthogonal vectors. Here, we set the x-axis parallel
with one edge of the polygon and the y-axis perpendicular
with x-axis, then the z-axis is the cross product of x and y.
In Fig. 1, the x-axis and edge v1v2 are parallel. In the new
coordinate system, p = (0,0, z0), where z0 is the distance

from p to the plane where polygon K lies. From (7) and (8),
we can get the following equation:

F(p) = 1

R4

∮
l

[∫
(r2

0 − x2 − y2)2 dx

]
dy

= 1

R4

∮
l

M dy

= 1

R4

(∑
i

∫
ci

M dy +
∑
j

∫
lj

M dy

)
, (9)

where r2
0 = R2 − z2

0, and M = x5

5 − 2
3x3(r2

0 − y2) + x(r2
0 −

y2)2. By calculating the integrals along arcs and line seg-
ments respectively, we can obtain the field for p.

(1) The integration along an arc ci

Let (x, y) = (r0 cos θ, r0 sin θ), and (dx, dy) =
(−r0 sin θ , r0 cos θ)dθ , from (9) we can obtain
∫

ci

M dy

=
∫ y2

y1

M dy

= r6
0 [60(θ2 − θ1) + 45(sin 2θ2 − sin 2θ1)

+ 9(sin 4θ2 − sin 4θ1) + (sin 6θ2 − sin 6θ1)]/360,

(10)

where θ1, θ2 are corresponding angles of the start point
and the end point of arc ci .

(2) The integration along a line segment lj
A line segment from vj (xj , yj ) to vj+1(xj+1, yj+1)

can be represented in a parametric form as following:

{
x = xj + (xj+1 − xj )t = xj + at

y = yj + (yj+1 − yj )t = yj + bt
, 0 ≤ t ≤ 1. (11)

It is easy to know that dx = (xj+1 − xj )dt = adt ,
dy = (yj+1 − yj )dt = bdt , where a = xj+1 − xj ,
b = yj+1 − yj . Then we can obtain:

∫
lj

M dy

=
∫ yj+1

yj

M dy =
∫ 1

0
Mbdt

= b(3a5 + 18a4xj + 6a2xjE + 3aF

+ a3G + 2xjH)/90, (12)

where

p = x2
j + y2

j − r2, q = x2
j + 3y2

j , A = r2 − q,

B = q − 3r2, C = 3x2
j + y2

j − r2,
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D = x2
j + 9y2

j − 3r2,

E = 6b2 + 15byj + 10p,

F = 5b4 + 24b3yj − 15b2A + 40byjp + 15p2,

G = 10b2 + 24byj + 15C,

H = 9b4 + 45r4 + 9x4
j + 45b3yj + 30x2

j y2
j + 45y4

j

− 30r2q + 30byjB + 10b2D.

3.5 Infinite support kernel functions

Infinite support kernel functions, such as Gaussian ker-
nel, Cauchy kernel and power inverse kernel, are also well
adopted in convolution surface modeling. For such kernels,
skeletons impose contributions to any point in question even
if its distance to the skeleton is large.

Here, we take the Cauchy kernel function as an example
to deduce the analytical field function:

f (r) = 1

(1 + s2r2)2
, (13)

where s is a parameter to control the width of the kernel.
The field for point p can be computed according to (3),

(5):

F(p) =
∫∫

D

1

(1 + s2(x2 + y2 + z2
0))

2
dx dy

= 1

s4

∮
l

[∫
1

(m + x2 + y2)2
dx

]
dy = 1

s4

∮
l

M dy,

(14)

where m = z2
0 + 1

s2 , and

M = x

2(m + y2)(m + x2 + y2)
+

arctan( x√
m+y2

)

2(m + y2)3/2
.

As the Cauchy kernel function is infinite support, the bound-
ary of the integration domain must be the line segments of
planar polygon skeletons. Then the curve integral can be
rewritten as:∮

l

M dy =
∑

i

∫
li

M dy. (15)

For each line segment, we also use its parametric represen-
tation as shown in (11). The integral over a line segment
li (vivi+1) can be computed as:
∫

li

M dy

=
∫ yi+1

yi

M dy =
∫ 1

0
bM dt

Fig. 3 The modeling framework. The model in (a) is a sketched sil-
houette which is used to create the convolution surface in (b). The fig-
ures in (c) and (d) illustrate the added components and edition of the
component respectively. The overall skeletons can be seen in (e), and
the final shape is rendered using marching cubes (f) and ray-casting (g)

= 1

4m

[
2B arctan A

w

w
+

[
2(bxi − ayi)p arctan

aA + bB

q

− 2abmq log |b|
]
/(pq)

]
, (16)

where

A = at + xi, B = bt + yi, w =
√

m + B2,

p = b2x2
i − 2abxiyi + a2(m + y2

i ),

q =
√

b2(m + x2
i ) − 2abxiyi + a2(m + y2

i ).

4 Prototype modeling system

In this section, we introduce a prototype modeling system
which employs the analytical solutions. To accelerate the
ray-casting of the resulting surface, we make full use of
the bounding volumes of the skeletons. As a result, the ray-
casting of the created shapes can be performed in an inter-
active way.

4.1 Modeling framework

The input to our prototype modeling system is a set of
sketched skeletons, including points, polylines and poly-
gons. Their geometry can be modified interactively. Our sys-
tem outputs a polygonal mesh generated by the marching
cubes algorithm implemented on the GPU. High-quality im-
ages of the created surfaces are rendered interactively using
a ray-casting algorithm on the GPU. The framework for our
modeling system is illustrated in Fig. 3, which we describe
further in the text.
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Step 1. The user draws a 2D shape (or points, polylines)
as the skeleton on a projection plane. Here, the sketched sil-
houette polygon is used for surface modeling in Step 2 di-
rectly. This step is performed on the CPU.

Step 2. The system generates a rotund generic convolu-
tion surface model using analytical field computation solu-
tions (Sect. 3). Polynomial weighted distributions are em-
ployed for polyline skeletons [12]. For finite support kernels,
the system calculates the valid part of the skeleton. A skele-
ton clipping algorithm is presented for finite support ker-
nels (Sect. 3.3). The valid skeleton calculation and the field
value computation are both performed on the GPU. A GPU
version of marching cubes algorithm [9, 21] is provided to
visualize the modeling surface.

Step 3. The user performs further editing operations on
existing skeletons, such as editing the skeleton geometry, the
weighting of parameters, and the kernel functions.

Step 4. In order to design complex shapes, the user ro-
tates the partially designed shape to obtain a new projection
plane, and repeats steps 1–3 to design another surface com-
ponent, which can be merged smoothly with existing com-
ponents.

Step 5. After the user finishes the design, an accurate
visualizing result can be rendered interactively with a ray-
casting algorithm for convolution surfaces (Sect. 4.2). This
step is also performed on the GPU.

In this framework, step 1, step 3, and step 4 are common
steps for a sketch-based modeling system using implicit sur-
faces. Our paper focuses on step 2 and step 5.

4.2 Ray-casting convolution surfaces on the GPU

Generally, there are mainly two methods to render implicit
surfaces: ray-casting and polygonization. Polygonization is
an indirect method which tessellates implicit surfaces into
polygons within a given tolerance. On the contrary, ray-
casting is an important direct rendering method. Compared
to polygonization, it provides an accurate rendering method
for visualizing implicit surfaces although it is slow. In our
sketch-based modeling system, both interactive polygoniza-
tion and ray-casting are supported. The sketched models
with high resolution can be interactively generated with
marching cubes on the GPU in our system, so the updated
shape can be rendered interactively with new sketches.

As the intersection between a ray and the convolution sur-
face is difficult to obtain analytically, iterative algorithms,
such as the interval algorithm, Bezier clipping, the secant
method, and the bisection method, are frequently adopted.
Here, we use the bisection method. To provide interactive
feedback, we use GPU and the bounding volumes of the
skeletons to accelerate the rendering process. Our rendering
can be made even faster if we employ advanced ray-casting
techniques [8, 16, 19].

Table 1 Bounding volumes of primitives

Primitive Bounding volume

Point 1 sphere:

Polyline (N ≥ 2) (N − 1) cylinders ∪ N spheres:

Polygon (N ≥ 3) N cylinders ∪ N spheres ∪ 1 prism:

Fig. 4 Sketched skeletons (left) and bounding volume (right) of a
chair

4.2.1 Bounding volume construction

The intersection point can be efficiently calculated if we
can obtain the interval containing only the first intersec-
tion point. Similar to [25], we employ the bounding vol-
ume of the skeleton to isolate the domain which contains the
ray/surface intersections. This will accelerate the intersec-
tion calculation significantly. The construction of bounding
volumes for different primitives are illustrated in Table 1.
Figure 4 shows a group of sketched skeletons and their cor-
responding bounding volumes.

4.2.2 Offset distance for computing the bounding volume

For a finite support kernel function, its corresponding offset
distance d used for computing the bounding volume is just
its effective radius. For the Cauchy kernel, as an unbounded
plane has the following field function [22]:

Fplane(p) =
∫ 2π

0

∫ +∞

d

1

(1 + s2r2)2
r dr dθ

= π

s2(1 + s2d2)
, (17)

we calculate d so that it satisfies the following equation:

π

s2(1 + s2d2)
= T

N
, (18)

where T is the threshold of the resulting implicit surface and
N is the maximum number of skeletons within a clipping
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Fig. 5 Adaptive bisection marching

sphere. It is easy to follow that:

d = 1

s

√
Nπ

T s2
− 1. (19)

4.2.3 Finding the intersection point

In general, it is hard to determine the suitable step-size for
searching an intersection point. In our case, as the inter-
section point is isolated within the bounding volume of the
skeleton, we set the initial step-size for marching forward
as half the bounding radius. In this way, it is not easy to
miss the first intersection even if the step-size is longer than
needed. That is, if the first intersection is lost, we can de-
tect it with the negative derivative Df along the ray, and
then step backwards with half the step-size and so forth. As
illustrated in Fig. 5, points P1 and P2 are outside of the con-
volution surface and their derivatives along the ray are pos-
itive, so we step forwards with the current step-size to point
P3. P3 is outside of the surface, and the derivative at P3 is
negative, so it is necessary to step backward with half the
step-size to Q1 which is within the surface. Then we can
perform the bisection/secant/regula falsi algorithm between
point P2 and Q1 until a point is found which is close enough
to the convolution surface within the prescribed tolerance.

Our ray-casting is performed on GPU using a thread for
each pixel. The vertices of the sketched planar polygons are
stored as textures on GPU (Fig. 6).

5 Results

Our prototype system is tested on a PC with a 2.67 GHz Intel
Core 2 Quad 9400 CPU (only 1 core is used) with 3 GB main
memory, and an NVIDIA GeForce GTX 260 GPU (with 27
stream multiprocessors) with 896 MB graphics memory. For
such a sketched modeling system, surface creation and visu-
alization are the bottlenecks as they involve massive field
computation. In our approach, after transferring the skele-
tal data into the graphics card, the evaluation of the field is
performed on the GPU, which allows us to create and visu-
alize convolution surfaces interactively. The results (Fig. 3,
Fig. 6, Fig. 7) in this paper are all interactively sketched with

Fig. 6 Skeletons of a chair (left), ray-casting images with Cauchy ker-
nel (middle) and quartic polynomial kernel (right)

our system. The resolution for marching cubes algorithm is
128 × 128 × 128, and the screen resolution for ray-casting
convolution surfaces is 512 × 512.

A user interface similar to ShapeShop [23] is devel-
oped in our system. The user can add, delete, and mod-
ify skeletons. With the analytical solutions and the adoption
of GPU, the reextraction of the updated iso-surface can be
performed interactively without any special data structure.
In addition, various skeletons are supported in our system,
such as points, lines, and planar polygon skeletons. Our sys-
tem is convenient for modeling complex objects with arbi-
trary topology. Multiple components can be fused together
smoothly and trivially. Figure 7 shows some sketched mod-
els with their skeletons, rendered with marching cubes and
ray-casting.

To test the efficiency of our novel analytical solution for
planar polygon skeletons, we have compared three differ-
ent strategies to calculate the potential field values. (1) DIT:
Convolution with double integral based on the triangulated
polygon; (2) CIT: Convolution with curve integral based on
the triangulated polygon; (3) CI: Convolution with curve in-
tegral based on the polygon (ours). The statistical results for
two examples shown in Fig. 8 are listed in Table 2. The time
listed in Table 2 is the total time to calculate the potential
field values for all the vertices of cubes (with the resolu-
tion 128 × 128 × 128). We label the calculation time in the
form of “α_β_γ ”, where α represents the kernel type (quar-
tic polynomial kernel or Cauchy kernel), β represents the
processor (CPU or GPU), and γ represents the integration
type (DIT, CIT or CI). The results show that our method has
the best performance both on CPU and GPU. For the tri-
angulation strategies, we have not counted in the consumed
time for triangulation and the additional time and memory
to transfer the triangles to GPU.

6 Conclusions and discussions

We have derived analytical convolution solutions for the pla-
nar polygon skeletons which are commonly used to model
3D objects. Our solution proves to be more efficient than
the brute-force based triangulation method. Furthermore, we
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Fig. 7 The leftmost column shows the sketched skeletons. The sec-
ond and the third columns show results rendered with marching cubes
and ray-casting respectively using the quartic polynomial kernel. The

last two columns show results rendered with marching cubes and ray-
casting respectively using the Cauchy kernel

Table 2 Comparison of calculation time (s)

Ex1 Ex2

Number of Vertices 69 223

Number of Triangles 67 221

Quartic_CPU_DIT 5.902 22.292

Quartic_CPU_CIT 13.670 50.769

Quartic_CPU_CI 2.772 7.779

Quartic_GPU_DIT 0.064 0.186

Quartic_GPU_CIT 0.115 0.341

Quartic_GPU_CI 0.037 0.110

Cauchy_CPU_DIT 96.932 327.216

Cauchy_CPU_CIT 268.491 895.512

Cauchy_CPU_CI 84.015 286.960

Cauchy_GPU_DIT 0.132 0.431

Cauchy_GPU_CIT 0.241 0.795

Cauchy_GPU_CI 0.090 0.291

have presented a sketch-based prototype modeling system
using closed-form solutions for convolution surfaces on the
GPU. Since skeletons are good abstractions for 3D objects
and convolution surface is a skeleton driven modeling tool,

Fig. 8 The figure on the left and the figure on the right show Ex1 and
Ex2, respectively, for comparing calculation time

our approach can create many aesthetically pleasing models
with complex topology easily.

Compared to existing sketched-based modeling systems
using convolution surfaces, our approach is easy to create
flat surfaces (as shown in Fig. 3, Fig. 6, and Fig. 7), which
are difficult to create using ConvMo [27]. On the other hand,
this can be considered as a limitation of our approach be-
cause the result is different from the inflation operation in
Teddy [11]. A set of functions provided by our prototype
system is not as complete as in other sketch-based modeling
systems. Currently, our system can ray-cast convolution sur-
faces with about twenty skeletons (each of which has about
twenty vertices) interactively. For more complex skeletons,
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we plan to employ advanced ray-casting acceleration solu-
tions [8, 16, 19].
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